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NONLINEAR STRESS-STRAIN EQUATIONS

RONALD L. HUSTON
University of Cincinnati, Cincinnati, Ohio

Abstract-Two unrelated methods which have previously been used in the development of stress-strain equations
of nonlinear elasticity are examined. The first is the traditional notion of relating the stress to the strain through
a strain energy function and the second is a recent geometrical approach suggested by Stojanovitch. These
approaches are discussed and developed in a common notation making possible a comparison between them.
This leads to explicit stress-strain relations in both the deformed and undeformed states of an elastic continuum.
These relations, which are consistent with both approaches, are second order in the strain tensors and contain
only two elastic constants.

THE DERIVATION of constitutive equations is clearly a fundamental issue in the theoretical
development of nonlinear continuum mechanics. Truesdell [1] has provided a treatise
which includes a discussion of the contributions of various writers toward the develop­
ment of these equations. In nonlinear elasticity, these constitutive equations are the
stress-strain equations, but here, explicit relationships have not been fully developed.
The absence of such relationships has restricted the development of nonlinear elasticity
since, in essence, only those problems in which the stress-strain equations can be left
arbitrary, have been solved. Hence, the objective herein is to discuss and develop explicit
relationships between the stress and the strain tensors.

Attempts to relate the stress and strain have been based primarily on thermodynamic
considerations and on the introduction of a strain energy function which is usually left
arbitrary. However, in 1960, Stojanovitch [2] proposed stress-strain equations based on
ingenious geometrical considerations. In the discussions which follow these two
approaches are reconciled and this provides a basis for the further development of the
equations.

1. NOTATION AND PRELIMINARIES

The notation used is basically that of Truesdell and Toupin [3] and Eringen [4]. The
elastic continuum is described in its undeformed or material state by the coordinates Xl
and in its deformed or spatial state by the coordinates Xi. Xl and Xi are in general, curvi­
linear coordinates and there is a functional relationship between them depending upon
the deformation. These coordinate systems are chosen independently in each state and
thus they are not conve~ted or dragged into each other as the convected coordinates
used by Green and Zema [5] and others.

In both the material and spatial states, contravariant and covariant base vectors may
be introduced which in tum may be used to define contravariant and covariant metric
tensors. If GIJ and gij are the covariant material and spatial metric tensors respectively,
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the Cauchy and Green deformation tensors are given by the expressions,

(1)

Using these deformation tensors, the spatial and material strain tensors, which are often
called the Eulerian and Lagrangian strain tensors, are defined as,

(2)

From equations (1) and (2) it is clear that these are related by the transformations,

(3)

Although these strain tensors are covariant, metric tensors may be used to obtain the
mixed and contravariant tensors,

EIJ = G/KGJLE
KL

eij = gikgilekl .
(4)

These strain tensors, however, do not follow the simple transformation of equation (3),
that is,

(5)

Contravariant strains which do follow such a transformation may be obtained by intro­
ducing inverse deformation tensors, given by the expressions

(C- 1)IJ = X:iX~gij, (C- 1)ij = x:/x{JGIJ . (6)

Then, analogous to equation (2), inverse Eulerian and Lagrangian strain tensors may be
defined as,

(7)

Thus, from equations (6) and (7), it is clear that these are related by the transformation,

(E- 1)IJ = X:iX~{e-l)ij, (e- 1 )ij = x:/x!AE-1)IJ. (8)

Mixed and covariant inverse strains may also be introduced as in equation (4). There are
essentiallY, however, four basic strain tensors, those of equations (2) and (7). The former
are clearly more conventional and are defined in a more natural manner. The latter have
been introduced primarily for completeness and to help provide insight in the discussions
which follow.

2. STRESS-STRAIN RELATIONS USING A STRAIN ENERGY FUNCTION

Parallel to the various strain tensors are several different stress tensors. Of these,
perhaps the most conventional is the covariant spatial stress. Through thermodynamic
and other considerations this stress may be related to the Eulerian strain by the equation

t} = (p/Po)(<5} - 2e~) o~/oe~ (9)

where t} is a mixed spatial stress related to the covariant spatial stress by the relation,

(10)

~ is the strain energy function, p and Po are the mass densities of the spatial and material
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states, respectively, and <5} is Kronecker's delta function. A derivation of equation (9)
may l?e found in References [1, p. 179] and [4, p. 148]. The density ratio factor is unnec­
essary [3, p. 730], but it is conventionally included in the literature. This constitutive
equation is merely one of several available, but it has been selected since the strain tensor
occurs explicitly. Although it is based upon thermodynamic considerations, it is some­
times also regarded as a postulate or definition.

In its initial or undeformed state the elastic continuum is assumed to be stress free.
Hence, material stress tensors, which are sometimes called pseudo stresses, are simply
representations in material coordinates of the spatial stress. Of all the possible material
stress tensors, one of the more conventional is Piola's contrav~riant stress T IJ whicll is
related to the contravariant spatial stress by the transformation [4, p. 109],

T IJ = (Po/p)X!jX~tjj (11)

where
(12)

Except for the density ratio factor, this transformation is identical to those. relating the
spatial and material strain tensors. Covariant and mixed material stress tensors may also
be introduced by the relations,

~J = G1KTf = GIKGJLTKL
• (13)

These stresses, however, are not related to the analogous spatial stresses by simple
transformations such as equation (11), that is,

~J :I: (pO/P)X:IX!Jt jj . (14)

Let SIJ represent a stress which does follow such a transformation, that is,

SIJ = (pO/P)X:IX!Jt jj . (15)

By using equations (1), (11), (12), and (15), it is easy to show that SIJ and ~J are related by
the expression,

SIJ = C1KCJLTKL
• (16)

Analogous to equation (9), T~ is related to the Lagrangian strain by the equation
[1, p. 177], [4, p. 146],

T~ = iJy./iJEf. (17)

In the references it is shown that this equation is equivalent to equation (9).
Assuming the elastic continuum to be homogeneous and isotropic, Y. is usually

regarded as a function of the invariants of a strain tensor, and although the form of the
function is usually not specified, some writers [1, p. 193] have suggested a power series
expansion. In view of equations (9) and (17), the invariants of e} and E~ are used. Of all
the different forms these invariants may havel it is convenient to employ those used by
Wesolowski [6] and also discussed by Ericksen [7]. These are given by the expressions,

Ie = e: IE = EI
lie = eM liE = EfEi (18)

IIIe = e~e~ek IIIE = EfEt-E~.
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As a series in these invariants, :E may be represented as either

:E = ale + bl; + clIe+ dl;

+ elelle + fIIIe+ ...

or

:E = AIE+BI~+ CIIE+DI~

+ EIEIIE+ FIIIE+...

(19)

(20)

where the coefficients of the invariants are constants which depend upon the physical
properties of the elastic continuum. Relations between these spatial and material coeffi­
cients may be obtained by expressing the material invariants in terms of the spatial
invariants. This is possible since e~ and E5 are related through equations (3) and (4).
Algebraic manipulation of these and the other preliminary equations of the preceding
section lead to the expressions,

IE = le+ 2I1e+ 4IIIe+···

lIE = lIe +4IIIe+...
IIIE = IIIe+...

(21)

where, as in equations (19) and (20), the terms not written are of the order of the fourth
power of the strain. Hence, substituting equations (21) into (20) and comparing with (19).
the following relations between the coefficients are obtained,

a=A

b=B

c = C+2A

d=D

e = E+4B

f= F+4C+4A.

(22)

(24)

The series in equations (19) and (20) are clearly ascending in orders of the strain. If
the series are terminated as shown, equations (9) and (17) provide stress-strain relations
which are second order approximations. Hence, upon substitution of equations (19),
and (20), (9) and (7) become,

t~ = (p/po)[(a+2ble+3dl;+elle)t5~

+(2c-2a+2ele-4ble)e~ (23)

+(3f-4c)eie7l
and

T5 = (A + 2BIE+ 3DIi+ EIIE)t55

+(2C+2EIE)E5

+3FEkE~

where terms of the third order in the strain have been dropped. Using equations (2).
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(25)

(27)

(16) and (24), the covariant material stress SlJ can thus be expressed as,

SlJ = (A+2BIE +EIIE +3DIi)GlJ

+(4A + 2C + 2EIE + 8BIE)ElJ

+(2A +8C +3F)E1KE},

In equation (2), the density ratio factor pJPo may be approximated to the second order
in the strain, by the expression [3, p. 267], [7],

p/Po = l-Ie +!I;-IIe • (26)

Hence, equation (20) becomes,

t; ~ [a+(2b-a)Ie+(3d-2b)I;

+ (2a + e)IIe]b~+ [2c - 2a

+(2a+ 2e - 4b- 2c)Ie]e~

+[3f-4cMe~.

Equations (23) and (24) contain six undetermined elastic constants and several writers
[1, pp. 201-211] have attempted, through various means, to relate them (that is, analogous
constants) to the familiar Lame constants A and J1.. In the following section stress-strain
equations are developed in a completely different manner and then by comparison, these
constants are identified.

3. STRESS-STRAIN RELATIONS BASED ON
GEOMETRICAL CONSIDERATIONS

Since the elastic continuum is homogeneous and isotropic, it can be represented in
the material and spatial states by the fourth order isotropic tensors,

(28)

and

lijkl = rJ.gijgkl + {3(gikgjl + gilgjk) (29)

where rJ. and {3 are constants depending upon the physical properties of the elastic con­
tinuum. Equations (28) and (29) are obtained by transforming into curvilinear coordinates
the expressions found in References [8] and [9]. Analogous to the definitions of the
deformation tensors in equation (1), fourth order deformation tensors may be defined as,

(30)

and

(31)

Substituting equations (28) and (29) into (30) and (31), respectively, and using equation (1)
then leads to the relations,

(32)
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M IJKL = rxCIJCKL + f3(C1KCJL +CILCJK ). (33)

Following the suggestion of Stojanovitch [2] and the analogy of the definition of the
Lagrangian and Eulerian strain in equation (2), fourth order material and spatial stress
tensors are defined as,

and

TrJKL = M IJKL -LIJKL (34)

tijkl = (p/PO)(lijkl- mijkl) (35)

where, as in equation (9), the density ratio factor is conventionally included. Noting
equations (30) and (31), it is clear that these stress tensors are related by the transforma­
tion,

i j k I
TrJKL = (pO/P)X'IX'JX'KX'Ltijkl ·

The second order covariant spatial stress is defined as the contracted tensor,

kltij = g tijkl .

Using equations (2), (29), (32), and (35), this becomes,

tij = (p/Po)[2rxIegij + (6rx +8f3)eij

- 4rxIeeij - 8f3eikeJ].

(36)

(37)

(38)

If this stress tensor is identified with the spatial stress tensor of the previous section, the
material stress SIJ, upon using equations (15), (36), and (37), may be expressed as,

SIJ = (C-1)KMTrJKM· (39)

Using equations (7), (28), and (34), this becomes, after some algebraic manipulations, to
the second order in the strain,

SIJ = 2rxIEGIJ + (6rx +8f3)EIJ

- 4rxIlEGIJ - 8f3EIKEf
(40)

Comparing equations (23) and (38) leads to the following relations between the physical
constants,

a=O

2b = 2rx

3d = 0

e=O

2c-2a = 6rx+8f3

2e-4b = -4rx.

3/-4c = -813
(41)

In like manner, comparing equations (25) and (40) leads to the expressions,

A = 0 3D = 0

2B = 2rx 4A+2C = 6rx+8f3

E = -4rx 2E+8B = o.

2A+8C+3F = -813
(42)
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In linear elasticity there is no distinction between the spatial and material coordinates
and the stress-strain equations take the familiar form,

t} = )Je15}+2jle}. (43)

By neglecting all but the terms linear in the strain, equation (38) becomes,

tij = 2IXIegij +(6IX+8p)eij' (44)

Comparing these equations identifies IX and f3 as,

IX = ),,/2, f3 = (2jl - 3),,)/8. (45)

Hence, from equations (39) and (40), the spatial and material constants are given by,

a = d = e = 0,

b = Aj2,

C=Jl

f = )., +(2/3)jl
(46)

and

(47)

A = D = 0,

B = Aj2

C=jl

E = -2)"

F = ).,-(1O/3)Jl.

Using these results, the strain energy I: in equations (19) and (20) may be expressed to the
third order in the strain as,

(48)

and

(49)

Finally, the spatial and material stress strain equations (23) and (25) or (38) and (40) take
the form,

tij = (p/Po)[).,Iegij +2jleij

- 2).,IAj+(3)" - 2jl)eike~]
(50)

and

SIJ = ).,IEGIJ +2jlEIJ

- 2).,IIEGIJ +(3)"- 2jl)E1KEf·
(51)

4. CONCLUSIONS

The comparison of the two diverse approaches toward the development of the stress­
strain equations has in equations (41) and (42) led to the identification of the spatial and
material physical constants of the spatial and material versions of the strain energy func­
tion. It is interesting to note that whereas these equations each provide seven relations
for six unknowns, they are not inconsistent Also, these spatial and material constants
identified in equations (46) and (47) identically satisfy the relations between them estab­
lished in equation (22). Finally, the resulting equations (50) and (51), consistent with both
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approaches, provide explicit second order stress-strain relationships, which can be
significantly useful in nonlinear elasticity.
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Resume-Deux methodes n'ayant aucune relation entre elles, et qui ont ete, employees auparavant pour Ie
developpement des equations effort-tension d'elasticite non-lineaire, y sont etudiees. La premiere represente
la notion ciassique qui relie l'effort a la tension par une fonction d'energie de tension, et la seconde consiste a
aborder la question geometriquement, selon Stojanovitch. Ces abords sont discutes et developpes au moyen
d'une mame notation, ce qui permet de les comparer. On en est conduit a des relations explicites entre effort
et tension, tant soit a I'etat deforme que non-deforme, d'un continuum elastique. Ces relations, verifiables par
les deux methodes, sont de second ordre dans les tenseurs de tension et ne contiennent que deux constantes
d'elasticite.

Zusammenf88SllDg-Zwei voneinander unabhiingige Methoden, welche fruher flir die Entwicklung der Span­
nungs-Dehnungs-Gleichungen nicht-linearer Elastizitiit angewandt wurden, werden uberpriift. Die erste beruht
auf der traditionellen Annahme der Abhiingigkeit der Spannung von Dehnung unter Zuhilfenahme einer
Delmungsenergie Funktion, und die zweite ist eine neuere geometrische Anniiherung welche von Stojanovitch
vorgeschla~nwurde.

Diese Anniiherungen wurden an Hand gemeinsamer Aufzeichnungen erortert und entwickelt urn einen
Vergleich zwischen ihnen zu ermoglichen. Dies fiihrt zu eingehenden Spannungs-Dehnungsbeziehungen fur
deformierte und undeformierte Arten des Zustandes eines elastischen Kontinuums. Diese Beziehungen we1che
mit heiden Anniiherungen vereinbart werden konnen sind zweiter Ordnung in Dehntensoren und beinhalten
bloss zwei elastische Konstante.

AficTpaKT--PacCMoTpeHHbl ,£lsa He3aSHCHMblX MeTO,£la paHbwe np"MeHJlSWIXCJl Ma pa3SIITIIJI ypasHeHIIH
"HanpJllKeHlle-,£lel!lopMaI.\IIJ1" HeJlHHeAHOM ynpyroCTII. nepsblH IIX HIIX-3TO Tpa,£lIlUIIOHHall lI,£lell
conocTasneHlIlI HanplilKeHlIlI II ,£lel!l0pMaUHII nocpe,£lCTBOM I!lYHKUIIII 3HeprHH ,£lel!lopMaUIIII, a STOPOH­
3TO reOMeTpll'leCKHA no,£lXO,£l npeMOlKeHHblM CTOliHOSH'IeM. 06a MeTO,£la paCCMOTpeHHbl H pa3pa6oTaHHbl
TIpll nOMOWII o6weA CIlCTeMbl 0603Ha'leHHA, 'ITO n03S0JIlieT S3aHMHoe cpaSHeHHe. 3TO npHBO.lllIT K
sblllsneHHIO COOTHoweHlIlI HanplilKeHHlI H ,£lel!lopMaUHH KaK B ,£lel!lopMHpOBaHHOM TaK H B He,£lel!l0pMII­
pOBaHHOM COCTOllHHH 3naCTH'IecKoro KOHTHHyyMa. 3TII COOTHoweHHlI (COSMecTHMble C o60HMH MeTO­
.lIaMH) lIBJllllOTCJI COOTHOWeHHJlMH sToporo TIOpJl,£lKa TeH30pa Jl.el!lopMaUHH H BKnIO'IaIOT acero JIIIWb
.lIDe TIOCTOJlHHblX 3JlaCTH'IHOCTH.


